1、定风量控制(CV)
出现于上世纪40年代,无论通风柜调节窗开度如何,风量始终保持一定。此种方式优势在于控制简单,但是缺点也非常明显,进口风速会随着调节窗位置而不断变化,安全性能差,而且能耗惊人。
2、双稳态控制(2-state)
当人们逐渐意识到定风量系统在安全性和能耗性上的缺陷之后,双稳态控制也就应运而生了。此种控制系统只有高风量与低风量两种状态,其典型的应用为,在夜间或者实验室内没有操作人员时,将系统降低为低风量运行。可以在一定程度上降低能耗,但是同定风量系统一样,其抵抗外扰的能力仍然较差,同时在工况转换时室内压力波动比较大。
3、变风量控制(VAV)
进入八十年代之后,随着控制技术的不断发展,出现了更加合理的实验室气流控制方法,即变风量控制。变风量控制是通过实验室内通风柜开度的变化调节系统的送排风量,从而保障无论调节窗开度如何,始终可以精确控制通风柜进口风速为0.5m/s。系统适应性强,可以在充分保障安全的前提下降低能耗,但是对阀门的控制精度和反应速度的要求高。
、试验室VAV控制系统选型说明
根据图纸设计要求,采用VAV控制系统.
试验室VAV变风量控制系统主要实现以下功能:
※***面风速控制
恒定的面风速保证了通风的安全性。
系统快速响应保证了通风的稳定性。
变风量控制保证了通风的低能耗。
※*** 室内流量控制
保持室内空气供给及排放间固定的量差,降低室内冷(热)量的消耗。
通过控制房间的压力差,防止实验室房间的有毒气体扩散到其它房间。
变风量系统(VAV)
是一种主动式的压力控制策略,它通过电动风量调节阀连续不断的对送风量或排风量进行调节,以保持希望的压力。主动式的VAV压力控制方法可以分为两种:纯压差控制(OP)和余风量(又称为流量追踪)控制(AV)。
(1) 纯压差控制方法
纯压差控制原理为:压差传感器测量室内与参照区域的压差(OP),与设定点(即期望的压差)比较后,控制器根据偏差按PID调节算法对送风量(或排风量)进行控制,从而达到要求的压差。可以看出,送风量(或排风量)是压差(Δp)、设定点以及PID 常数(α,β)的函数。
“伪压差”控制方法与纯压差控制方法相似,都是根据伯努利原理,利用一个装在小管内的风速探头,将小管置于洁净室与参照区之间的开孔中,由于洁净室内与参照区的压力差将使空气从此小管中流过,管中的风速探头就可传感洁净室内与参照区之间的空气流速,从而根据伯努利原理利用风速计算出洁净室与参照区的压差,根据此压差信号,按照上述的方法,控制器对洁净室的送风或排风量进行控制,达到所期望的压差值,这样的方法称为。
(2) 余风量(气流追踪)控制方法
洁净室的送风量与排风量之间保持一定的风量差(称为余风量),必然会导致洁净室产生一定的压差。余风量(气流追踪)控制即控制系统实时测量风量(送风和排风量)变化,通过调节送风量或排风量,动态的达到相应的风量平衡,使送风量和排风量之间保持恒定的风量差,从而维持恒定的压差。
控制系统利用气流测量装置实时测量送风量和排风量,排风量可以在排风主管上测量,或在各个单独的排风上进行测量并求和,控制器据此调节送风量,使其追踪排风量的变化,保持一定的余风量,从而达到所希望的压差值。可以看出余风量控制是一个开环控制系统
在这里,余风量就是达到所希望压差时渗人或渗出洁净室的空气流量(单位为CFM )。负的余风量即总排风量大于总送风量,它将导致负压的产生,而正的余风量则是总送风量大于总排风量,它将导致正压产生。
风量等式中,余风量是定值。但在实际情况下,它是变化的,例如当流量传感器发生偏移时,实际的余风量也将发生变化。因此,应该考虑选择足够大的余风量来弥补由于围护结构气密程度、风管泄漏以及流量测量装置精度误差等造成的影响。上述的两种压差控制方法,在实际运用中都必须按照预定的频率进行验证。例如对余风量控制,每半年就应该进行对设定的余风量进行校正。
(3 ) 混合控制系统
由于生物安全等级3或4级的生物安全实验室的研究和实验对象非常危险,实验室的压差控制以及气流方向控制更加重要,必须确保压差和气流方向得到稳定可靠的控制。对于这样压差控制非常关键的地方,采用纯压差控制和余风量控制两种方法混合的控制系统是很好的选择,它可以确保对实验室压差稳定可靠的控制。
通常的做法是采用余风量控制作为基本控制方法,同时加人压差传感器和控制器对余风量控制系统的余风量进行设定。当房间特性发生变化时,如风管的泄漏以及围护结构的气密性等发生变化,余风量也会发生变化(通常是变大),此时压差控制系统可以动态的计算出一个合适的余风量,以保持稳定的压差控制。
激光车间恒温恒湿空调|智能精密空调
网址: /sell/show-8579.html